
Coherent states for the quantum mechanics on a compact manifold

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 304021

(http://iopscience.iop.org/1751-8121/41/30/304021)

Download details:

IP Address: 171.66.16.149

The article was downloaded on 03/06/2010 at 07:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/30
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 304021 (12pp) doi:10.1088/1751-8113/41/30/304021

Coherent states for the quantum mechanics on a
compact manifold

K Kowalski1 and J Rembieliński1,2
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Abstract
We review our recent observations concerning quantum mechanics on such
compact manifolds as a circle, torus and sphere.

PACS numbers: 02.20.Sv, 03.65.−w, 03.65.Sq

1. Introduction

In spite of the fact that coherent states are of fundamental importance in quantum physics the
theory of these states in the case when the configuration space exhibits nontrivial topology can
hardly be called complete. In particular, so far there is no general method for the construction
of coherent states for a particle on an arbitrary manifold. As a matter of fact there exists the
general Perelomov construction [1] of coherent states for a Lie group G. In the Perelomov
approach the coherent states are defined by

T (g)|φ0〉 (1.1)

where T (g), g ∈ G, is a unitary irreducible representation of the Lie group G in the Hilbert
space H, and |φ0〉 ∈ H is a fixed vector. Let H be the stability subgroup of the vector |φ0〉, i.e.
H is the maximal subgroup with the property

T (h)|φ0〉 = eiϕ|φ0〉, (1.2)

where h ∈ H . Since T (g)|φ0〉 and T (gh)|φ0〉, where h ∈ H , refer to the same state, therefore
the coherent states are parametrized by cosets belonging to G/H . Now let M be a configuration
manifold. As with the standard Glauber–Klauder coherent states for the quantum mechanics
on a real line, we assume that the coherent states for a particle on M should be labelled by
points of the classical phase space, that is the cotangent bundle T ∗M . Clearly T ∗M need not,
in general, be a quotient G/H mentioned above (homogeneous space), and Perelomov method
cannot be applied. Even in the case when the classical phase space T ∗M is a homogeneous
space, there still remains in the Perelomov approach a nontrivial problem of identification
of G,H and |φ0〉. For instance, we have no idea how to apply the Perelomov technique
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for the circular cylinder, an example of the two-dimensional homogeneous space, which is
the phase space for a particle on a circle. In this work we review our recent observations
concerning the construction and basic properties of coherent states for the quantum mechanics
on such compact manifolds as a circle, torus and sphere. Our treatment is based on the
identification of the algebra of quantum observables compatible with constraints and the
natural parametrization of the classical phase space. The coherent states are then defined as
eigenvectors of a non-Hermitian operator built of elements of the algebra. The unitary operator
in the polar decomposition of such non-Hermitian operator describes the position of a particle
on a manifold and the Hermitian part is related to the momenta. In section 1 we discuss the
coherent states for the quantum mechanics on a circle. Section 2 deals with the coherent states
for a particle on a torus. Section 3 is devoted to the coherent states for the quantum mechanics
on a sphere.

2. Coherent states for the quantum mechanics on a circle

In this section, we collect the basic facts about the coherent states for a particle on a circle S1.
For an excellent review of the quantum mechanics on a circle including the coherent states we
refer to a very recent paper [2]. The algebra adequate for the study of the circular motion is
the e(2) algebra

[J,Xi] = iεijXj [Xi,Xj ] = 0 i, j = 1, 2, (2.1)

where J is the angular momentum, X1 and X2 are the position operators, εij is the
antisymmetric tensor, and we set h̄ = 1. Indeed, the algebra (2.1) has the Casimir operator
given in a unitary irreducible representation by

X2
1 + X2

2 = r2. (2.2)

On introducing the unitary operator U = eiϕ̂ representing the position of the quantum particle
on a circle

U = 1

r
(X1 + iX2) (2.3)

we arrive at the following algebra:

[J,U ] = U [J,U †] = −U †. (2.4)

Consider the eigenvalue equation

J |j 〉 = j |j 〉. (2.5)

The operators U and U † act on the vectors |j 〉 as the rising and lowering operators, respectively

U |j 〉 = |j + 1〉 U †|j 〉 = |j − 1〉. (2.6)

Demanding the time-reversal invariance of the algebra (2.4) we find that j can be only integer
and half-integer [3].

We define the coherent states for a particle on a circle by means of the eigenvalue
equation [3]

Z|z〉 = z|z〉, (2.7)

where

Z = e−J+1/2U (2.8)

and the complex number

z = e−l+iα (2.9)

2



J. Phys. A: Math. Theor. 41 (2008) 304021 K Kowalski and J Rembieliński

parametrizes the circular cylinder S1 × R which is the classical phase space for a particle
moving in a circle. Note that the form of the operator Z ‘reconstructs’ the parametrization
(2.9) of the classical phase space, where l is the classical orbital momentum and α the classical
angle. The coherent states specified by (2.7) can be alternatively obtained by means of the
Zak transform [4]. It follows that

|z〉 =
∞∑

j=−∞
z−j e−j 2/2|j 〉, (2.10)

where substitution j → j − 1/2 in the case with the half-integer j is understood. In view of
(2.9) we can write the coherent states in the form

|l, α〉 =
∞∑

j=−∞
elj−ijα e−j 2/2|j 〉, (2.11)

where |l, α〉 ≡ |z〉, with z = e−l+iα . The coherent states are not orthogonal. We have

〈z|w〉 =

⎧⎪⎪⎨
⎪⎪⎩

θ3

(
i

2π
ln z∗w

∣∣∣∣ i

π

)
(integer case)

θ2

(
i

2π
ln z∗w

∣∣∣∣ i

π

)
(half-integer case),

(2.12)

where integer (half-integer) case refers to j integer (half-integer), and θ3 and θ2 are the Jacobi
theta-functions [5]. The resolution of the identity for the coherent states can be written as

1

4iπ3/2

∫
C

dz dz∗ e−(ln|z|)2

|z|2 |z〉〈z| = I, (2.13)

where C is the complex plane. Using the parametrization (2.9) we can write the
(over)completeness condition (2.13) in the form

1

2π3/2

∫ 2π

0
dα

∫ ∞

−∞
dl e−l2 |l, α〉〈l, α| = I. (2.14)

The resolution of the identity (2.13) gives rise to the Bargmann representation such that

〈φ|ψ〉 = 1

4iπ3/2

∫
C

dz dz∗ e−(ln|z|)2

|z|2 (φ(z∗))∗ψ(z∗), (2.15)

where φ(z∗) = 〈z|φ〉 is the function possessing the Laurent series expansion of the form

φ(z∗) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
j=−∞

cj z
∗−j (integer case)

∞∑
j=−∞

cj z
∗−j+1/2 (half-integer case).

(2.16)

The operators act in the representation (2.15) as follows:

Jφ(z∗) = −z∗ d

dz∗ φ(z∗) Uφ(z∗) = φ(ez∗)√
ez∗ U †φ(z∗) = z∗

√
e
φ(e−1z∗). (2.17)

The closeness of the coherent states to points of the classical phase space is illustrated by
means of the following relations:

〈l, α|J |l, α〉
〈l, α|l, α〉 ≈ l, (2.18)
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where a very good approximation of the relative error is [3] �l/l ≈ 2π exp(−π2) sin(2lπ)/ l

(for the estimation of the error see also the very recent paper [6]), thus the maximal error
arising in the case l → 0 is of order 0.1%. Moreover, we have exact equality for l
integer or half-integer. Therefore, the parameter l in z can be identified with the classical
angular momentum. This interpretation of l is confirmed also by the following approximate
relation [3]:

|〈j |l, α〉|2
〈l, α|l, α〉 ≈ 1√

π
e−(j−l)2

(2.19)

which means that the probability distribution of energies for a free particle on a circle is of
‘discrete’ Gaussian type. The expectation value of the unitary operator U = eiϕ̂ representing
the position on a circle is given by

〈l, α|U |l, α〉
〈l, α|l, α〉 ≈ e−1/4 eiα, (2.20)

where the approximation is very good. On introducing the relative expectation value

〈〈U 〉〉(l,α) := 〈U 〉(l,α)

〈U 〉(0,0)

(2.21)

where 〈U 〉(l,α) = 〈l, α|U |l, α〉/〈l, α|l, α〉, we obtain

〈〈U 〉〉(l,α) ≈ eiα. (2.22)

We conclude that the parameter α can be regarded as a classical angle. We point out that
the factor e−1/4 in (2.20) is connected with the fact that U is not diagonal in the coherent
state basis. Indeed, it is diagonal in the position representation discussed below (see (2.27)).
Finally, the coherent states minimize the following uncertainty relations [7]:

�2(J ) + �2(ϕ̂) � 1, (2.23)

where

�2(J ) = 1
4 ln(〈e−2J 〉〈e2J 〉) (2.24)

and

�2(ϕ̂) = 1
4 ln|〈U 2〉|−2. (2.25)

More precisely, in the coherent state we have

�2(J ) = 1/2 �2(ϕ̂) = 1/2. (2.26)

We point out that, in opposition to standard coherent states, the coherent states for the
quantum mechanics on a circle are not uniquely determined up to unitary transformation,
by the requirement of the saturation of the uncertainty relations (2.23). Namely, they are
also minimized by the Schrödinger-cat-like states [8]. For a more detailed discussion of the
uncertainty relations for a particle on a circle we also refer besides [7] to the paper [9].

In order to identify wavefunctions corresponding to the coherent states for the quantum
mechanics on a circle we now discuss the coordinate representation. This representation is
spanned by the eigenvectors |ϕ〉 of the operator U such that

U |ϕ〉 = eiϕ|ϕ〉. (2.27)

These vectors form the orthogonal and complete set. The resolution of the identity can be
written as

1

2π

∫ 2π

0
dϕ|ϕ〉〈ϕ| = I. (2.28)

4
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On taking into account (2.28) we arrive at the realization L2(S1) for the abstract Hilbert space
of states given by

〈f |g〉 = 1

2π

∫ 2π

0
dϕ f ∗(ϕ)g(ϕ), (2.29)

where f (ϕ) = 〈ϕ|f 〉. Because the basis vectors |j 〉 are represented in L2(S1) by the functions

ej (ϕ) = 〈ϕ|j 〉 = eijϕ (2.30)

therefore the functions which are the elements of L2(S1) are periodic in ϕ for j integer and
antiperiodic in ϕ for j half-integer. The action of operators J and U in the representation
(2.29) is of the following form:

Jf (ϕ) = −i
df

dϕ
Uf (ϕ) = eiϕf (ϕ). (2.31)

Using (2.10) and (2.30) we find that the coherent states are given by [10]

f(l,α)(ϕ) =

⎧⎪⎪⎨
⎪⎪⎩

θ3

(
1

2π
(ϕ − α − il)

∣∣∣∣ i

2π

)
(integer case)

θ2

(
1

2π
(ϕ − α − il)

∣∣∣∣ i

2π

)
(half-integer case),

(2.32)

where f(l,α)(ϕ) = 〈ϕ|l, α〉. The probability density for the coordinates implied by (2.32) is

p(l,α)(ϕ) = |f(l,α)(ϕ)|2
‖f(l,α)‖2

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣θ3
(

1
2π

(ϕ − α − il)
∣∣ i

2π

) ∣∣2

θ3
(

il
π

∣∣ i
π

) (integer case)

∣∣θ2
(

1
2π

(ϕ − α − il)
∣∣ i

2π

) ∣∣2

θ2
(

il
π

∣∣ i
π

) (half-integer case).

(2.33)

From computer simulations it follows that the function p(l,α)(ϕ) is peaked at ϕ = α. This
observation confirms once more the interpretation of the parameter α labelling the coherent
states as a classical angle.

We finally remark that the evolution of the wave packets corresponding to coherent states
for a free particle on a circle was studied in [10]. In particular, we identified an amazing
behaviour of a particle which could be interpreted as quantum jumps on a circle. The quantum
deformation of coherent states for the quantum mechanics on a circle was introduced in [11].
The examples of applications of the coherent states for the circular motion include quantum
gravity [12], construction of coherent states for a charged particle in a uniform magnetic
field [13] and their usage for the study of Husimi phase space distributions and semiclassical
propagators [6].

3. Coherent states for a particle on a torus

In this section we summarize the most important facts about the quantum mechanics on a
torus. Taking into account the topological equivalence of a two-torus T 2 and the product of
two circles as well as the form of the algebra (2.4) we arrive at the following algebra adequate
for the study of the motion on a torus:

[Ji, Uj ] = δijUj

[
Ji, U

†
j

] = −δijU
†
j

[Ji, Jj ] = [Ui,Uj ] = [
U

†
i , U

†
j

] = [
Ui,U

†
j

] = 0 i, j = 1, 2.
(3.1)

Consider the eigenvalue equation

J |j〉 = j|j〉 (3.2)

5
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where J = (J1, J2), and j = (j1, j2). The operators Ui and U
†
j , i, j = 1, 2, act on the vectors

|j〉 as the ladder operators, that is

Ui |j〉 = |j + ei〉 U
†
i |j〉 = |j − ei〉, (3.3)

where e1 = (1, 0), and e2 = (0, 1) are the unit vectors. Proceeding as with the case of a
particle on a circle and demanding the time-reversal invariance we find that there are four
possibilities left: j1-integer and j2-integer, j1-integer and j2-half-integer, j1-half-integer and
j2-integer, and j1-half-integer and j2-half-integer. We designate these cases symbolically by
(0, 0), (0, 1/2), (1/2, 0) and (1/2, 1/2), respectively. Motivated by the form of (2.8) we
define the coherent states for the quantum mechanics on a torus by means of the eigenvalue
equation [14]

Z|z〉 = z|z〉, (3.4)

where z = (z1, z2) ∈ C
2,

Zi = e−Ji+1/2Ui i = 1, 2 (3.5)

and

zk = e−lk+iαk k = 1, 2 (3.6)

so z ∈ C
2 parametrizes the product of two cylinders (S1 ×R)×(S1 ×R) which is the classical

phase space for a particle on a torus. Some preliminary results concerning coherent states for
a torus based on the construction of coherent states for the circle utilizing the Zak transform
were described in [4]. The coherent states are given by

|z〉 =
∑
j∈Z

2

z
−j1
1 z

−j2
2 e−j2/2|j〉, (3.7)

where Z is the set of integers and the substitutions j2 → j2 − 1/2, j1 → j1 − 1/2, and
j1 → j1 − 1/2 and j2 → j2 − 1/2 in the cases (0, 1/2), (1/2, 0) and (1/2, 1/2), respectively,
are understood. In the parametrization (3.6) the coherent states take the form

|l, α〉 =
∑
j∈Z

2

el·j−iα·j e−j2/2|j〉 (3.8)

where |l, α〉 ≡ |z〉 with zk = e−lk+iαk , k = 1, 2, and u · v = ∑2
i=1 uivi ,. The overlap of the

coherent states is

〈z|w〉 = θ3−2p

(
i

2π
ln z∗

1w1

∣∣∣∣ i

π

)
θ3−2q

(
i

2π
ln z∗

2w2

∣∣∣∣ i

π

)
[(p, q) case], (3.9)

where p, q = 0, 1/2. The resolution of the identity in the parametrization (3.6) can be written
in the form

1

4π3

∫
T 2

dα

∫
R

2
dl e−l2 |l, α〉〈l, α| = I (3.10)

where
∫
T 2 dα = ∫ 2π

0

∫ 2π

0 dα1 dα2. We omit the discussion of the Bargmann representation
which is a straightforward consequence of (3.10) and relations obtained in the previous section
in the case of the coherent states for a particle on a circle.

As with the coherent states for the quantum mechanics on a circle our most important
criterion to test the correctness of the coherent states for a particle on a torus will be their
closeness to the classical phase space in the sense of the formulae on expectation values like
(2.18) and (2.22). It follows that

〈l, α|J |l, α〉
〈l, α|l, α〉 ≈ l, (3.11)

6
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where the approximation is as good as with the case of the circle, and we have the exact equality
for lk integer and half-integer. Therefore the parameter l can be regarded as a classical angular
momentum. The expectation values of the unitary operators Uk, k = 1, 2, representing the
position of a particle on a circle satisfy

〈l, α|Uk|l, α〉
〈l, α|l, α〉 ≈ e−1/4 eiαk k = 1, 2, (3.12)

where the approximation is very good. Using the relative expectation value (see (2.21)) we
find

〈〈Uk〉〉(l,α) ≈ eiαk k = 1, 2. (3.13)

It thus appears that αk can be identified with a classical angle parametrizing the position of a
particle on a torus.

We now study the wave packets corresponding to the coherent states for a particle on a
torus. Consider the eigenvectors |ϕ〉 of the operators Uk representing the position of a particle
on a torus

Uk|ϕ〉 = eiϕk |ϕ〉 k = 1, 2. (3.14)

The vectors |ϕ〉 form the orthogonal and complete set. The resolution of the identity can be
written in the form

1

4π2

∫
T 2

dϕ|ϕ〉〈ϕ| = I. (3.15)

Hence we obtain the coordinate representation L2(T 2) for the abstract Hilbert space of states
specified by the scalar product

〈f |g〉 = 1

4π2

∫
T 2

dϕf ∗(ϕ)g(ϕ), (3.16)

where f (ϕ) = 〈ϕ|f 〉. Taking into account the form of the basis vectors |j〉 in the coordinate
representation

ej(ϕ) = 〈ϕ|j〉 = eij·ϕ (3.17)

we find that the functions which are the elements of L2(T 2) are periodic or antiperiodic ones
in ϕ1 and ϕ2. The operators Ji and Uj , i, j = 1, 2 act in the representation (3.11) as follows

Jkf (ϕ) = −i
∂f

∂ϕk

Ukf (ϕ) = eiϕkf (ϕ) k = 1, 2. (3.18)

Taking into account (3.8) and (3.12) we get the wavefunctions corresponding to the coherent
states of the form

f(l,α)(ϕ) = θ3−2p

(
1

2π
(ϕ1 − α1 − il1)

∣∣∣∣ i

2π

)
θ3−2q

(
1

2π
(ϕ2 − α2 − il2)

∣∣∣∣ i

2π

)
[(p, q) case]

(3.19)

where f(l,α)(ϕ) = 〈ϕ|l, α〉, and p, q = 0, 1/2. We now restrict for brevity to (0, 0) case
that is the case of functions periodic in both ϕ1 and ϕ2. The probability distribution for the
coordinates is then given by

p(l,α)(ϕ) = |f(l,α)(ϕ)|2
‖f(l,α)‖2

=
∣∣θ3

(
1

2π
(ϕ1 − α1 − il1)

∣∣ i
2π

)
θ3

(
1

2π
(ϕ2 − α2 − il2)

∣∣ i
2π

)∣∣2

θ3
( il1

π

∣∣ i
π

)
θ3

( il2
π

∣∣ i
π

) . (3.20)

The computer simulations indicate that the probability distribution (3.20) has a maximum
at ϕ = α. Such behaviour of the probability density is another evidence in support of the
interpretation of the parameter α marking the coherent states as the classical angle.

7
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We finally point out that that the observations obtained in this section for a two-dimensional
torus can be immediately generalized to the case of an n-dimensional torus. The possible
application of the coherent states for the quantum mechanics on a torus would be the theory
of quantum chaos. In fact, the torus is the configuration space for such systems exhibiting
deterministic chaos as double pendulum and toroidal pendulum. Furthermore, it seems that
the coherent states for the torus would be also of importance in nanotechnology, especially
nanoscopic quantum rings [15].

4. Coherent states for the quantum mechanics on a sphere

This section is devoted to the discussion of the basic properties of the coherent states for a
particle on a sphere. We first observe that the most natural algebra for the study of the motion
on a sphere is the e(3) algebra of the form

[Ji, Jj ] = iεijkJk [Ji,Xj ] = iεijkXk [Xi,Xj ] = 0 i, j, k = 1, 2, 3. (4.1)

Indeed, the algebra (4.1) has two Casimir operators given in a unitary irreducible representation
by

X2 = r2 J · X = λ. (4.2)

In the following we restrict to the case λ = 0, then it is plausible to interpret the second
equation of (4.1) as the orthogonality condition of the angular momentum J and the radius
vector X . The basis of the irreducible representation of the e(3) algebra is spanned by the
common eigenvectors J2, J3, X2 and J · X such that

J2|j,m; r〉 = j (j + 1)|j,m; r〉 J3|j,m; r〉 = m|j,m; r〉 (4.3a)

X2|j,m; r〉 = r2|j,m; r〉 (J · X)|j,m; r〉 = 0, (4.3b)

where j is a nonnegative integer and −j � m � j . Now the coherent states |z〉 can be defined
as the solution of the eigenvalue equation [16]

Z|z〉 = z|z〉, (4.4)

where Z is given by

Z =
(

e1/2

√
1 + 4J2

sinh
1

2

√
1 + 4J2 + e1/2 cosh

1

2

√
1 + 4J2

)
X

r

+ i

(
2 e1/2

√
1 + 4J2

sinh
1

2

√
1 + 4J2

)
J × X

r
, (4.5)

where the cross designates the vector product. The operator Z and z ∈ C
3 satisfy

Z2 = 1 z2 = 1 (4.6)

in accordance with the identification of the classical phase space for a particle on a sphere, i.e.
the cotangent bundle T ∗S2 with the affine quadrics [17]. The natural parametrization of z by
points of the classical phase space is given by

z = cosh|l|x
r

+ i
sinh|l|

|l| l × x

r
, (4.7)

where the vectors l, x ∈ R
3, fulfil x2 = r2 and l · x = 0, that is we assume that l is the classical

angular momentum and x is the radius vector of a particle on a sphere. The properties of

8
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the operator Z, in particular commutativity of its components, are direct consequences of the
following matrix representation of this operator:

eσ·J+1σ · X = σ · Z, (4.8)

where σi, i = 1, 2, 3, are the Pauli matrices, which is compatible with the matrix representation
of the parametrization (4.7) of the classical phase space such that

eσ·lσ · x = σ · z. (4.9)

We now return to (4.4). The coherent states are of the form

|z〉 =
∞∑

j=0

j∑
m=−j

e−(1/2)j (j+1)
√

2j + 1
(2|m|)!
|m|!

√
(j − |m|)!
(j + |m|)!

×
(−ε(m)z1 + iz2

2

)|m|
C

|m|+ 1
2

j−|m|(z3)|j,m; r〉, (4.10)

where ε(m) is the sign of m and Cα
n (x) are the Gegenbauer polynomials. The coherent states

are not orthogonal. We have [18]

〈z|w〉 =
∞∑

j=0

e−j (j+1)(2j + 1)Pj (z
∗ · w), (4.11)

where Pj (z) are the Legendre polynomials. The resolution of the identity can be written as
[18] ∫

z2=1
dµ(z)|z〉〈z| = I, (4.12)

where

dµ(z) = 1

4π
kH 2(arccosh(z · z∗), 1) dz1 dz2 dz3 dz∗

1 dz∗
2 dz∗

3 (4.13)

and

kH 2(ρ, t) = 21/2(4πt)−3/2 e−t/4
∫ ∞

ρ

s e−s2/4t

(cosh s − cosh ρ)1/2
ds (4.14)

is the heat kernel at the origin in hyperbolic space. Therefore the Bargmann representation is
specified by the scalar product

〈φ|ψ〉 =
∫

z2=1
dµ(z)(φ(z∗))∗ψ(z∗). (4.15)

The action of the operators Ji and Xj, i, j = 12, 3 in the Bargmann representation is given by

Jφ(z∗) = −i

(
z∗ × ∂

∂z∗

)
φ(z∗) (4.16a)

X1φ(z∗) = − i

sinh 1

(
eJ2−J2/2z∗

3 eJ2/2−J2 − cosh 1 e−J2/2z∗
3 eJ2/2

)
φ(z∗) (4.16b)

X2φ(z∗) = i

sinh 1

(
eJ1−J2/2z∗

3 eJ2/2−J1 − cosh 1 e−J2/2z∗
3 eJ2/2)φ(z∗) (4.16c)

X3φ(z∗) = e−J2/2z∗
3 eJ2/2φ(z∗). (4.16d)

As remarked by Hall [19] the Bargmann representation (4.15) is a concrete realization of the
general mathematical scheme of construction of Bargmann spaces introduced in [20].
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As with the coherent states for a circle and torus discussed in previous sections our
criterion of closeness of the coherent states for the quantum mechanics on a sphere to points
of the classical phase space is behaviour of expectation values of the angular momentum and
the position of a particle. From computer calculations it follows that

〈l, x|J |l, x〉
〈l, x|l, x〉 ≈ l (4.17)

where |l, x〉 ≡ |z〉, with z given by (4.7), and the approximation is a bit worse than in the
case of the circle and torus. Namely, for |l| � 10, the relative error is of order 1%. Thus
l parametrizing the coherent states can be identified with the classical angular momentum.
This interpretation of l is also confirmed by the behaviour of the distribution of energies of the
rotator in the coherent state [16] given by

pj,m(x, l) = |〈j,m; r|x, l〉|2
〈x, l|x, l〉 −j � m � j. (4.18)

Namely, for fixed integer m = l3 the function pj,m has a maximum at jmax coinciding with the
integer nearest to the positive root of the equation

j (j + 1) = l2. (4.19)

Therefore l2/2 can be regarded as the classical energy of the particle. Furthermore, for fixed
integer j in pj,m satisfying (4.19), the function pj,m is peaked at mmax coinciding with the
integer nearest to l3. This means that the parameter l3 can really be identified with the third
component of the classical momentum. Furthermore, the computer simulations indicate that

〈l, x|X|l, x〉
〈l, x|l, x〉 ≈ e−1/4x, (4.20)

where the accuracy of the approximation (4.20) is the same as for (4.17). Proceeding
analogously as in the case of the circle and torus we can introduce relative expectation
values of Xi with respect to averages in the coherent states labelled by the unit vectors
x = ei , i = 1, 2, 3 in (4.7) [16], so that

〈〈X〉〉(l,x) ≈ x (4.21)

therefore, the parameter x can be regarded as the classical position on a sphere.
We now identify the wavefunctions corresponding to the coherent states. The coordinate

representation for the quantum mechanics on a sphere is spanned by the common eigenvectors
|x〉 of the position operators Xi , that is

X|x〉 = x|x〉 (4.22)

where we restrict, without loss of generality, to the irreducible representations with r = 1, so
X2 = 1, and x2 = 1. The resolution of the identity is then given by∫

S2
dν(x)|x〉〈x| = I (4.23)

where dν(x) = sin θ dϕ dθ , where θ, ϕ are spherical coordinates, so x = (sin θ cos ϕ,

sin θ sin ϕ, cos θ). The resolution of the identity (4.23) leads to the functional representation
L2(S2) of vectors such that

〈φ|ψ〉 =
∫

S2
dν(x)φ∗(x)ψ(x), (4.24)

where φ(x) = 〈x|φ〉. The operators J and X act in the representation (4.24) in the following
way:

Jφ(x) = −i

(
x × ∂

∂x

)
φ(x) Xφ(x) = xφ(x), (4.25)

10
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where ∂/∂x = (∂/∂x1, ∂/∂x2, ∂/∂x3) is the gradient operator. Using the remarkable identity

Z = e−J2/2X eJ2/2 (4.26)

we find that the wavefunctions corresponding to the coherent states can be written as [18]

φ(l,y)(x) = 1√
4π

∞∑
j=0

e−(1/2)j (j+1)(2j + 1)Pj (x · z) (4.27)

where φ(l,y)(x) = 〈x|l, y〉, and z = cosh|l| y
r

+ i sinh|l|
|l| l × y

r
, where y2 = r2 and l · y = 0.

The computer simulations show that the probability density p(l,y)(x) for the coordinates in
the normalized coherent state given by

p(l,y)(x) = |φ(l,y)(x)|2
‖φ(l,y)‖2

= 1

4π

∣∣∑∞
j=0 e−(1/2)j (j+1)(2j + 1)Pj (x · z)

∣∣2∑∞
j=0 e−j (j+1)(2j + 1)Pj (|z|2) (4.28)

where |z|2 = ∑3
i=1 |zi |2, is peaked at x = y. This result supports the interpretation of the

parameter x in (4.7) as the classical position of a particle on a sphere.
We end this section with some general remarks. An interesting problem is to generalize

the construction of the coherent states for the quantum mechanics on a sphere S2 to the case
of λ �= 0 (see (4.2)). A hint is the identification of classical variables parametrizing the
cotangent bundle referring to the case λ �= 0 [21] suggesting the following generalization L

of the operator J in formula (4.8):

L = J − λ

r2
X (4.29)

where L · X = 0. Unfortunately, we did not succeed in using (4.29) for construction of the
coherent states. The technical reason was the problem with commutativity of the components
of the operator Z. We also point out that the coherent states for a circle S1 and sphere
S2 were generalized to the case of an n-dimensional sphere Sn by Hall [22]. The range of
possible applications of the introduced coherent states seems to be exceptionally wide. In fact,
the quantum mechanics on a sphere is one of the most extensively studied quantum systems
discussed in many textbooks. Interestingly, we have found citations of our papers on coherent
states for a particle on a sphere in a geophysical journal [23].

5. Conclusion

In this work we have presented our recent results concerning coherent states for a particle
on such compact manifolds as a circle, torus and sphere. We point out that all coherent
states discussed herein are eigenvectors of some non-Hermitean operators possessing polar
decomposition such that the Hermitean part is a function of the momentum and a unitary
part is connected with the position of a quantum particle (see (2.8), (3.5) and (4.8)). It is
suggested that such a polar decomposition takes place in a general case of an arbitrary compact
configuration manifold. Open problems connected with the coherent states include uncertainty
relations. In the case of the coherent states for a circle the introduced uncertainty relations
(2.23) need further studies [8, 9]. On the other hand, the authors do not know uncertainty
relations minimized by the coherent states for a sphere. In spite of difficulties, an importance
of models involving compact configuration space indicate that the presented coherent states
would be a useful tool in quantum physics.
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[7] Kowalski K and Rembieliński J 2002 J. Phys. A: Math. Gen. 35 1405
[8] Trifonov D A 2003 J. Phys. A: Math. Gen. 36 2197
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[16] Kowalski K and Rembieliński J 2000 J. Phys. A: Math. Gen. 33 6035
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